Multiple in vivo phosphorylated tyrosine phosphatase SHP-2 engages binding to Grb2 via tyrosine 584.
نویسندگان
چکیده
SHP-2 (also named PTP1D, syp, or SH-PTP2) has been identified as a phosphotyrosine phosphatase comprising two src-homology-2 (SH2) domains. Upon growth factor stimulation, SHP-2 becomes tyrosine phosphorylated, thereby increasing its catalytic activity. Here, we identified SHP-2 to be phosphorylated on multiple tyrosine residues in response to different stimuli and unmasked the carboxyl-terminal tyrosine 584 as a major phosphorylation site in human cell lines. Tyrosine 584 shares, together with tyrosine 546, the consensus sequence pY-X-N-X, a characteristic of potential binding sites for the SH2 domain of growth factor receptor-bound protein 2 (Grb2). We show here that mutation of tyrosine 584, but not tyrosine 546, to phenylalanine totally abolished the binding of Grb2 to SHP-2. By using a systematic mutagenesis approach, phosphorylation of additional tyrosines in each of the SH2 domains of SHP-2 was detected after coexpression of epidermal growth factor receptor, but not after coexpression of platelet-derived growth factor receptor, whereas tyrosine 263 located in the interspace between SH2 and catalytic domain appears to be exclusively recognized by platelet-derived growth factor receptor. Immunoprecipitation of SHP-2 from a panel of mammary carcinoma cell lines copurifies several tyrosine phosphorylated proteins; the most prominent band has an apparent molecular weight of M(r) 115,000.
منابع مشابه
Specificity of the SH2 domains of SHP-1 in the interaction with the immunoreceptor tyrosine-based inhibitory motif-bearing receptor gp49B.
Inhibitory receptors on hemopoietic cells critically regulate cellular function. Despite their expression on a variety of cell types, these inhibitory receptors signal through a common mechanism involving tyrosine phosphorylation of the immunoreceptor tyrosine-based inhibitory motif (ITIM), which engages Src homology 2 (SH2) domain-containing cytoplasmic tyrosine or inositol phosphatases. In th...
متن کاملImmune signalling: SHP-2 docks at multiple ports
The protein tyrosine phosphatase SHP-2 functions in many diverse signalling pathways. The recent identification of a SHP-2-binding protein as a homologue of the Grb2-associated adaptor protein Gab1 sheds light on the role of SHP-2 in immune signalling.
متن کاملRegulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1.
SHPTP1 (PTP1C, HCP, SHP) is an SH2 domain-containing tyrosine phosphatase expressed predominantly in hematopoietic cells. A frameshift mutation in the SHPTP1 gene causes the motheaten (me/me) mouse. These mice are essentially SHPTP1 null and display multiple hematopoietic abnormalities, most prominently hyperproliferation and inappropriate activation of granulocytes and macrophages. The me/me p...
متن کاملModulation of PDGF Receptor Signaling via the Phosphatase SHP-2 and the Docking Protein Gab1
Kallin, A. 2003. Modulation of PDGF receptor signaling via the phosphatase SHP-2 and the docking protein Gab1. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1300 . 69 pp. Uppsala. ISBN 91-554-5780-0 Platelet-derived growth factors (PDGF) constitute a family of potent mitogens and chemoattractants for cells of mesenchymal origin, wh...
متن کاملCharacterization of a novel tyrosine phosphorylated 100-kDa protein that binds to SHP-2 and phosphatidylinositol 3'-kinase in myeloid cells.
Fms is a tyrosine kinase-containing receptor for macrophage colony-stimulating factor (M-CSF) that regulates survival, growth, and differentiation of cells along the monocyte/macrophage lineage. M-CSF stimulation of murine myeloid FDC-P1 cells expressing Fms resulted in the tyrosine phosphorylation of a number of signal transduction proteins, including an unidentified 100-kDa protein. This 100-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research
دوره 7 12 شماره
صفحات -
تاریخ انتشار 1996